Example of the analysis and design of a bridge according to EC8/2

T. Isaković

Soil C Bridge II. importance class Ductile response

Deck cross-section

Concrete C35/45 E = 34 GPa
Steel B500
$A=9,65 \mathrm{~m}^{2} \quad \mathrm{I}_{\mathrm{t}}=36,5 \mathrm{~m}^{4}$
$A_{\text {sy }}=3,82 \mathrm{~m}^{2} \quad \mathrm{I}_{\mathrm{y}}=96 \mathrm{~m}^{4}$
$A_{s z}=6,93 \mathrm{~m}^{2} \quad \mathrm{I}_{\mathrm{z}}=21,5 \mathrm{~m}^{4}$

According to EC8/2 It is reduced to It $=36,5 / 2=18,25 \mathrm{~m}^{4}$

Columns

C $25 / 30 E=3,1 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{A}=3,76 \mathrm{~m}^{2}$
$A_{\text {sy }}=1,6 \mathrm{~m}^{2}$
$\mathrm{A}_{\mathrm{sz}}=2,8 \mathrm{~m}^{2}$
$\mathrm{I}_{\mathrm{t}}=4,19 \mathrm{~m}^{4}$
$\mathrm{I}_{\mathrm{y}}=5,18 \mathrm{~m}^{4}$
$\mathrm{I}_{\mathrm{z}}=1,94 \mathrm{~m}^{4}$

$$
\frac{b}{h}=\frac{270}{40}=6,75<8
$$

- Box cross-section is favourable due to the large width of the compression zone, providing larger ductility

favourable

unfavourable

Analysis

Coordinate systems

Actions
Dead load - superstructure g $=295 \mathrm{kN} / \mathrm{m}$
Weight of piers $g_{s}=94 \mathrm{kN} / \mathrm{m}$

Masses
Bridge of II. importance class - only dead load is taken into account
Mass - deck $\mathrm{M}_{\mathrm{p}}=\mathrm{g} / 9,81=295 / 9,81=30 \mathrm{t} / \mathrm{m}$
Mass - piers $\mathrm{M}_{\mathrm{s}}=\mathrm{g}_{\mathrm{s}} / 9,81=94 / 9,81=9,6 \mathrm{t} / \mathrm{m}$

Dead load

The axial forces occur in piers
Axial forces at the base of piers (weight of the piers is included)
$N_{S 14}=14329 \mathrm{kN}$
Normalized axial force

$$
\begin{aligned}
\eta & =\frac{N_{E d}}{A_{c} f_{c k}}=\frac{14329}{3,76 \cdot 25 \cdot 1000}=0,152<0,2 \\
\mathrm{~N}_{\mathrm{S} 21} & =17485 \mathrm{kN}
\end{aligned}
$$

Normalized axial force

$$
\eta=\frac{N_{E d}}{A_{c} f_{c k}}=\frac{17485}{3,76 \cdot 25 \cdot 1000}=0,186<0,2
$$

Axial forces in piers are calculated using programme SAP2000

Seismic analysis in the longitudinal direction

Fundamental mode method - Rigid deck model

Field of application:
a) Mass of piers less than 20% of the mass of the deck
$M_{s}=(14+21+14) 9,6=470 t$
$M_{p}=30 \cdot 160=4800 t \quad M_{s} / M_{p}=0,098$
b) Eccentricity - Distance between the centre of mass and centre of stiffness is 0 , the bridge is symmetric.

SDOF model of the bridge

M

K

$$
T=2 \pi \sqrt{\frac{M}{K}}=2 \pi \sqrt{\frac{5035}{144998}}=1,171 \mathrm{~s}
$$

Total mass of the structure
$\mathrm{M}=30 \cdot 160+(7+10,5+7) 9,6=5035 \mathrm{t}$
Half of the piers' mass is added

Flexibility of piers

$$
\begin{aligned}
& f=\frac{h^{3}}{3 E I_{z}}+\frac{h}{G A_{s y}} \\
& f_{S 14}=\frac{14^{3}}{3 \cdot 3,1 \cdot 10^{7} 1,94}+\frac{14}{1,29 \cdot 10^{7} 1,6}=1,589 \cdot 10^{-5} \\
& f_{S 21}=\frac{21^{3}}{3 \cdot 3,1 \cdot 10^{7} 1,94}+\frac{21}{1,29 \cdot 10^{7} 1,6}=5,23 \cdot 10^{-5}
\end{aligned}
$$

Stiffness of piers

$$
\begin{aligned}
& k=1 / f \\
& k_{S 14}=62947 \mathrm{kN} / \mathrm{m} \\
& k_{S 21}=19104 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Stiffness of the structure
$\mathrm{K}=2 \cdot \mathrm{k}_{\mathrm{s} 14}+\mathrm{k}_{\mathrm{s} 21}=144998 \mathrm{kN} / \mathrm{m}$

Design acceleration spectrum
$a_{g}=\gamma_{1} a_{g R}=1 \cdot 0,25 \mathrm{~g}=0,25 \mathrm{~g}$
Soil C:
$S=1,15$
$\mathrm{T}_{\mathrm{B}}=0,2 \mathrm{~s}$
$\mathrm{T}_{\mathrm{C}}=0,6 \mathrm{~s}$
$\mathrm{T}_{\mathrm{D}}=2,0 \mathrm{~s}$
damping 5\%
$\mathrm{T}_{\mathrm{C}}=0,6<\mathrm{T}=1,171 \mathrm{~s}<\mathrm{T}_{\mathrm{D}}=2 \mathrm{~s}$

Shear span ratio of pier $\mathrm{S} 14 \alpha=14 / 3,5=4>3=>q=3,5$

$$
S_{d}(T)=a_{g} S \frac{2,5}{q}\left(\frac{T_{C}}{T}\right)=0,25 \cdot 9,81 \cdot 1,15 \frac{2,5}{3,5}\left(\frac{0,6}{1,171}\right)=1,032 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}>0,2 \cdot 0,25 \cdot 9,81=0,49 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Seismic force in the longitudinal direction

$$
F=M S_{d}=5035 \cdot 1,032=5196 \mathrm{kN}
$$

Shear forces in piers

$$
\begin{aligned}
& F_{s 14}=\frac{k_{s 14}}{k} F=\frac{62947}{144998} 5196=2256 \mathrm{kN} \\
& F_{s 21}=\frac{k_{s 21}}{k} F=\frac{19104}{144998} 5196=685 \mathrm{kN}
\end{aligned}
$$

Bending moments in piers
$\mathrm{M}_{\mathrm{s} 14}=\mathrm{F}_{\mathrm{s} 14} \mathrm{~h}_{\mathrm{s} 14}=2256 \cdot 14=31584 \mathrm{kNm}$
$M_{s 21}=F_{s 21} h_{s 21}=685 \cdot 21=14385 \mathrm{kNm}$

Seismic analysis in the transverse direction

Fundamental mode method - Flexible deck model (FMM)
Structure is subjected to forces $F_{i}=M_{i} \cdot g$
Masses are concentrated in nodes at the equidistant lengths of 5 m
Half of the mass of piers is added at relevant nodes

The scheme of the inertial forces $\mathrm{F}_{\mathrm{ig}}=\mathrm{M}_{\mathrm{i} g}$

Displacements d_{i}, corresponding to inertial forces F_{ig}
Table 1

node	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\mathrm{~d}_{\mathrm{i}}[\mathrm{m}]$	0,125	0,125	0,125	0,125	0,125	0,126	0,127	0,13	0,134	0,137	0,141	0,144	0,147	0,150	0,151	0,152	0,152
node	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	
$\mathrm{~d}_{\mathrm{i}}[\mathrm{m}]$	0,152	0,151	0,150	0,147	0,144	0,141	0,137	0,134	0,13	0,127	0,126	0,125	0,125	0,125	0,125	0,125	

average displacement is $0,135 \mathrm{~m}$, maximum difference is $0,0270 \mathrm{~m}$
Ratio $0,027 / 0,135=0,20-$ the rigid deck model can be used, however this is the maximum allowed value, therefore the analysis is contnued with flexible model

Using data in Table 1 the following data are obtained:
Period of vibration

$$
T=2 \pi \sqrt{\frac{\sum M_{i} d_{i}^{2}}{g \sum M_{i} d_{i}}}=0,742 s
$$

Design acceleration

$$
S_{d}(T)=a_{g} S \frac{2,5}{q}\left(\frac{T_{C}}{T}\right)=0,25 \cdot 9,81 \cdot 1,15 \frac{2,5}{3,5}\left(\frac{0,6}{0,742}\right)=1,629 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Inertial forces F_{i}

$$
F_{i}=\frac{4 \pi^{2}}{g T^{2}} S_{d}(T) d_{i} M_{i}=\frac{4 \pi^{2}}{9,81 \cdot 0,742^{2}} 1,629 d_{i} M_{i}=11,90 \cdot d_{i} M_{i}
$$

Table 2

node	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\mathrm{~F}_{\mathrm{i}}[\mathrm{kN}]$	111	223	223	223	223	225	328	232	239	244	251	257	262	267	269	271	453
node	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	
$\mathrm{~F}_{\mathrm{i}}[\mathrm{kN}]$	271	269	267	262	257	251	244	239	232	328	225	223	223	223	223	111	

Using programme SAP 2000 the following internal forces in piers are calculated
Bending moments
$\mathrm{M}_{\mathrm{s} 14}=47710 \mathrm{kNm}$
$M_{s 21}=28247 \mathrm{kNm}$
Shear forces
$V_{\mathrm{s} 14}=3408 \mathrm{kN}$
$\mathrm{V}_{\mathrm{s} 21}=1345 \mathrm{kN}$

In some cases (e.g. in bridges supported by very short coulmns located near the centre of the brdidge) the method can give unrealistic results

Thus an additional control, presented on the next slide, is performed

Displacements $d_{i}\left(\right.$ Table 1), corresponding to inertial forces $F_{i g}=M_{i} g$ are divided by the ratio $S_{d}(T)$ and g

$$
S_{d}(T) / g=1,629 / 9,81=0,166
$$

Table 3 displacements $\mathrm{d}_{\mathrm{i}, 0}$

node	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\mathrm{~d}_{\mathrm{i}}[\mathrm{cm}]$	2,07	2,07	2,07	2,07	2,07	2,09	2,11	2,16	2,22	2,27	2,34	2,39	2,44	2,49	2,51	2,52	2,52
node	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	
$\mathrm{~d}_{\mathrm{i}}[\mathrm{cm}]$	2,52	2,51	2,49	2,44	2,39	2,34	2,27	2,22	2,16	2,11	2,09	2,07	2,07	2,07	2,07	2,07	

Displacements from Table 3 are compared with displacements $d_{i 1}$, corresponding to forces F_{i} (see Table 2)
Table 4 displacements $\mathrm{d}_{\mathrm{i}, 1}$

node	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$\mathrm{~d}_{\mathrm{i}}[\mathrm{cm}]$	1,85	1,89	1,92	1,95	1,98	2,02	2,07	2,15	2,24	2,33	2,41	2,49	2,56	2,61	2,64	2,66	2,67
node	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	
$\mathrm{~d}_{\mathrm{i}}[\mathrm{cm}]$	2,66	2,64	2,61	2,56	2,49	2,41	2,33	2,24	2,15	2,07	2,02	1,98	1,95	1,92	1,89	1,85	

Displacements from Table 3 and 4

Differences between $d_{i, 0}$ in $d_{i, 1}$

1. Area P_{d}, corresponding to displacements $d_{i, 1}$ is calculated
2. Area P_{Δ}, corresponding to differences between $d_{i, 1}$ in $d_{i, 0}$ is calculated
3. P_{d} and P_{Δ} are compared.

Areas P_{d} and P_{Δ}.are calculated as it is illustrated in the following Figure

If $P_{\Delta} / P_{d}<20 \%$, the results of Fundamental mode method are acceptable. Otherwise the response spectrum analysis should be used.

For the analyzed bridge
$P_{d}=3,168 \mathrm{~m}^{2}$
$P_{\Delta}=0,161 \mathrm{~m}^{2}$
$P_{\Delta} / P_{d}=4,4 \%<10 \%$ regular structure - FMM can be used.

In EC8/2 it is required to take into account the torsional effects when FMM is used.
$M_{t}=F e$, where F is seismic force, e eccentricity

In the analyzed bridge $F=\Sigma F_{i}=8149 \mathrm{kN}$ (sum of the forces from Table 2)
$e=e_{0}+e_{a}=0+0,05 L=0,05160=8 m$
L is the length of the bridge
$M_{t}=8149 \cdot 8=65192 \mathrm{kNm}$

This moment is divided to columns supposing the rigid deck, as it is demonstrated in the following slide

Final values of internal forces in S14 are
$\mathrm{F}_{\mathrm{S} 14}=3408+652=4060 \mathrm{kN}$
$M_{S 14}=F_{s 14} \times H_{s}=4060 \times 14=56840 \mathrm{kNm}$

These forces are not considered in the further design, since the Response spectrum analysis (presented in the following slides) results in smaller demand, because the accidental eccentricity e_{a} should not be taken into account (only in very short and skewed bridges)

Response spectrum method (RSM)

In general the programme is needed to define the fundamental modes of vibration.
Modes of vibrations
1.mode

1. Mode in the longitudinal direction

$$
\mathrm{T}=0,736 \mathrm{~s}
$$

2. mode
3. Mode in the transverse direction

$$
\mathrm{T}=0,747 \mathrm{~s}
$$

$m_{\text {eff }}=95 \%-$ translation in the transverse direction

$$
m_{\text {eff }}=71,5 \%-\text { torsion }
$$

3. mode

Torsional mode - rotations around vertical axis

$$
m_{\text {eff }}=24,6 \%-\text { torsional mode }
$$

Note: Torsional mode is not activated, since the structure is symmetric and the masses are symmetric

In each direction $\Sigma m_{\text {eff }}$ should be at least 90% of the total mass

Comparison of the periods of vibrations defined by FMM and RSM

Longitudinal direction

FMM
$\mathrm{T}=1,171 \mathrm{~s}$

Transverse direction
FMM
$T=0,742 \mathrm{~s}$

RSM

$\mathrm{T}=1,170 \mathrm{~s}$

RSM
$\mathrm{T}=0,747 \mathrm{~s}$

Spectral accelerations $S_{d}(T)$ corresponding to each mode of vibration are defined

Internal forces and displacements due to the each mode of vibration are defined

Contributions of different modes are combined using SRSS or CQC rule.

Shear forces in piers, defined using FMM and RSM

Longitudinal direction
FMM (without torsion)
$V_{s 14}=2256 \mathrm{kN}$
$V_{s 21}=685 \mathrm{kN}$

Transverse direction
FMM (without torsion)
$V_{\text {s14 }}=3408 \mathrm{kN}$
$\mathrm{V}_{\mathrm{s} 21}=1345 \mathrm{kN}$

RSM
$\mathrm{V}_{\mathrm{s} 14}=2261 \mathrm{kN}$
$V_{\mathrm{s} 21}=688 \mathrm{kN}$

RSM

$$
\begin{array}{ll}
V_{s 14}=3256 \mathrm{kN} & 4,7 \% \\
V_{\mathrm{s} 21}=1408 \mathrm{kN} & 4,7 \%
\end{array}
$$

Displacements due to the seismic action

Effective stiffness (cross-section) of RC elements should be taken into account.

Effective moment of inertia $I_{\text {eff }}$ can be defined according to Annex C

$$
\begin{array}{ll}
E_{c} I_{e f f}=\frac{1,2 M_{R d}}{\Phi_{y}} & \begin{array}{l}
\mathrm{M}_{\mathrm{Rd}}-\text { design flexural strength } \\
\Phi_{\mathrm{y}}-\text { yield curvature }
\end{array} \\
\Phi_{y}=\frac{\left(\varepsilon_{y}-\varepsilon_{y}\right)}{d_{s}} & \begin{array}{l}
\varepsilon_{\mathrm{sy}}-\text { yield strain of the reinforcement }
\end{array} \\
\begin{array}{l}
\varepsilon_{\mathrm{cy}}-\text { concrete compressive strain corresponding to yielding } \\
\text { of the reinforcement }
\end{array} \\
\mathrm{d}_{\mathrm{s}}-\text { effective depth of the cross-section }
\end{array}
$$

Approximation of curvature Φ_{y} in rectangular cross-sections

$$
\Phi_{y}=2,1 \xi_{y} / d_{s}
$$

To define the effective stiffness the design flexural strength $\mathrm{M}_{\text {Rd }}$ (flexural reinforcement) should be known.

If the effective stiffness are used only to calculate the displacements, the flexural reinforcement in columns should be defined prior to the estimation of displacements.

If the seismic forces are also estimated based on the effective stiffness, M_{Rd} should be assumed. The assumption should be checked at the end of the analysis.

Seismic action in the direction x

Seismic action in the direction y

$$
\begin{aligned}
M_{y 1} & =\sqrt{M_{y 1, F x}^{2}+M_{y 1, F y}^{2}} \\
M_{y 2} & =\sqrt{M_{y 2, F x}^{2}+M_{y 2, F y}^{2}}
\end{aligned}
$$

Plan view

Bi-axial bending should be taken into account when the flexural reinforcement of piers is defined
$100 \% \mathrm{M}_{\mathrm{y}}$

Estimation of the effective stiffness

The flexural reinforcement in piers is defined first
Results of RSM are considered
Pier S14
The basement of the pier
Transverse direction
$\mathrm{N}=14329 \mathrm{kN}$ (axial force due to the dead load)
$\mathrm{M}_{\mathrm{y}}=45582 \mathrm{kNm}$
$\mathrm{Mz}=9496 \mathrm{kNm}$ (30\% of the bending moment in the longitudinal direction)

Longitudinal direction
$\mathrm{N}=14329 \mathrm{kN}$ (axial force due to the dead load)
$M_{y}=13675 \mathrm{kNm}$ (30% of the bending moment in the transverse direction)
$\mathrm{M}_{\mathrm{z}}=31654 \mathrm{kNm}$

Interaction diagram - uniaxial bending

Interaction diagram - bi-axial bending $\left(\mathrm{M}_{\mathrm{z}}-\mathrm{M}_{\mathrm{y}}-\mathrm{N}\right)$

Effective moment of inertia

Results of RSM are taken into account

Pier S14

Transverse direction

$$
\begin{aligned}
& \xi_{y y}=\frac{f_{s y}}{E_{s}}=\frac{500 \cdot 1000 / 1,15}{2,0 \cdot 10^{8}}=0,00217 \\
& \Phi_{y}=2,1 \xi_{y} / d_{s}=2,1 \frac{0,00217}{0,9 \cdot 3,5}=0,00145
\end{aligned}
$$

$$
E_{c} I_{e f f}=\frac{1,2 M_{R d}}{\Phi_{y}}=\frac{1,2 \cdot 56500}{0,00145}=46758600 \mathrm{kNm}^{2}
$$

$$
I_{e f f, y}=1,51 \mathrm{~m}^{4}
$$

$$
\frac{I_{e f f, y}}{I_{y}}=\frac{1,51}{5,18}=0,29
$$

Longitudinal direction

$$
\begin{aligned}
& \xi_{y}=\frac{f_{s y}}{E_{s}}=\frac{500 \cdot 1000 / 1,15}{2,0 \cdot 10^{8}}=0,00217 \\
& \Phi_{y}=2,1 \xi_{y} / d_{s}=2,1 \frac{0,00217}{0,9 \cdot 2}=0,00253 \\
& E_{c} I_{e f f}=\frac{1,2 M_{R d}}{\Phi_{y}}=\frac{1,233500}{0,00253}=15889330 \mathrm{kNm}^{2} \\
& I_{e f f, z}=0,51 \mathrm{~m}^{4} \\
& \frac{I_{e f f, z}}{I_{z}}=\frac{0,51}{1,94}=0,26
\end{aligned}
$$

Shear areas are also appropriatelly reduced

Pier S21
The basement of the pier
Transverse direction
$\mathrm{N}=17485 \mathrm{kN}$ (axial force due to the dead load)
$\mathrm{M}_{\mathrm{y}}=29567 \mathrm{kNm}$
$\mathrm{Mz}=4332 \mathrm{kNm}$ (30\% of the bending moment in the longitudinal direction)

Longitudinal direction
$\mathrm{N}=17485 \mathrm{kN}$ (axial force due to the dead load)
$\mathrm{M}_{\mathrm{y}}=8870 \mathrm{kNm}$ (30\% of the bending moment in the transverse direction)
$\mathrm{M}_{\mathrm{z}}=14440 \mathrm{kNm}$

Note:
In EC8/1minimum flexural reinforcement in columns amounts to 1%. The response of hollow box crosssections is similar to that of the walls. Therefore, the minimum flexural reinforcement of $0,5 \%$ was taken into account. This is the minimum reinforcement required in flanges of the walls with limited ductile response-EC8/1

Effective moment of inertia

Results of RSM are taken into account

Pier S21

Transverse direction

$$
\xi_{y y}=\frac{f_{s y}}{E_{s}}=\frac{500 \cdot 1000 / 1,15}{2,0 \cdot 10^{8}}=0,00217
$$

$$
\Phi_{y}=2,1 \xi_{y y} / d_{s}=2,1 \frac{0,00217}{0,9 \cdot 3,5}=0,00145
$$

$$
E_{c} I_{e f f}=\frac{1,2 M_{R d}}{\Phi_{y}}=\frac{1,2 \cdot 34800}{0,00145}=28800000 \mathrm{kNm}^{2}
$$

$$
I_{e f f, y}=0,93 m^{4}
$$

$$
\frac{I_{e f f, y}}{I_{y}}=\frac{0,93}{5,18}=0,18
$$

Longitudinal direction

$$
\begin{aligned}
& \xi_{y}=\frac{f_{s y}}{E_{s}}=\frac{500 \cdot 1000 / 1,15}{2,0 \cdot 10^{8}}=0,00217 \\
& \Phi_{y}=2,1 \xi_{y} / d_{s}=2,1 \frac{0,00217}{0,9 \cdot 2}=0,00253 \\
& E_{c} I_{e f f}=\frac{1,2 M_{R d}}{\Phi_{y}}=\frac{1,2 \cdot 20800}{0,00253}=9865610 \mathrm{kNm} \\
& I_{\text {eff }, z}=0,32 \mathrm{~m}^{4} \\
& \frac{I_{\text {eff }, z}}{I_{z}}=\frac{0,32}{1,94}=0,16
\end{aligned}
$$

Shear areas are also appropriatelly reduced

Analysis is repeated taking into account estimated effective stiffness
Periods of vibrations corresponding to the effective stiffness
$\mathrm{T}_{1}=2,355 \mathrm{~s} \quad \mathrm{~m}_{\text {eff }}=100 \%$
$\mathrm{T}_{2}=1,376 \mathrm{~s} \quad \mathrm{~m}_{\text {eff }}=99,6 \% \quad\left(\mathrm{~m}_{\text {eff }}=75 \%-\right.$ zasuki okoli z osi $)$
$\mathrm{T}_{3}=1,288 \mathrm{~s} \quad \mathrm{~m}_{\text {eff }}=25 \%$ (zasuki okoli z osi)
Displacements above the abutments:
Displacements corresponding to the reduced seismic action
Longitudinal direction
$d_{\text {Ee,long }}=6,12 \mathrm{~cm}(T 1>2 \mathrm{~s}$ displacements are defined based on the elastic spectrum)
Transverse direction
$d_{\text {Ee,tran }}=3,80 \mathrm{~cm}$
Displacements due to the seismic action:
Longitudinal direction

$$
d_{E}=\mu d_{E e}=q d_{E e}=3,5 \cdot 6,12=21,4 \mathrm{~cm}
$$

Transverse direction

$$
d_{E}=\mu d_{E e}=q d_{E e}=3,5 \cdot 3,8=13,3 \mathrm{~cm}
$$

Ragularity of the bridge

$r=q M_{E d} / M_{R d}$

In piers $\mathrm{S} 14 \mathrm{r}=\mathrm{q}=3,5$, since the flexural strength is fully exploited

Pier S21 can be neglected, since its contribution to total base shear is less than 20\%

Longitudinal direction
$\mathrm{V}_{\mathrm{ES}, 21}=688 \mathrm{~V}_{\text {tot }}=5210 \mathrm{~V}_{\mathrm{ES}, 21} / \mathrm{V}_{\text {tot }}=688 / 5210=0,132$
Transverse direction
$\mathrm{V}_{\mathrm{ES}, 21}=1408 \mathrm{~V}_{\text {tot }}=7920 \mathrm{~V}_{\mathrm{ES}, 21} / \mathrm{V}_{\text {tot }}=1408 / 7920=0,178$
$r_{\text {max }}=r_{\text {min }}=>\rho=1<\rho_{o}=2$ bridge is regular

The presented procedure, used to estimate the seismic action effects in terms of forces is conservtive

They can be also estimated considering the effective stiffness
To estimate the effective stiffness the flexural strength M_{Rd} (flexural reinforcement) should be assumed

According to EC8/1 the effective stiffness can be estimated reducing the stiffness corresponding to the gross cross-sections by 50%. Thus the moments of inertia and shear areas corresponding to gross cross-sections were reduced by 50%.

The corresponding periods of vibrations were

$$
\begin{array}{ll}
T_{1}=1,654 \mathrm{~s} & m_{\text {eff }}=100 \% \\
T_{2}=1,038 \mathrm{~s} & m_{\text {eff }}=99,5 \% \quad\left(m_{\text {eff }}=74,9 \%-\text { torsion }\right) \\
T_{3}=1,014 \mathrm{~s} & m_{\text {eff }}=24,7 \% \text { (torsion) }
\end{array}
$$

Internal forces in piers

Pier S14
Internal forces at the basement
Transverse direction
$\mathrm{N}=14329 \mathrm{kN}$ (axial force due to the dead load)
$\mathrm{M}_{\mathrm{y}}=34771 \mathrm{kNm}$
$M_{z}=6713 \mathrm{kNm}$ (30% of the bending moment in the longitudinal direction)

Longitudinal direction
$\mathrm{N}=14329 \mathrm{kN}$ (axial force due to the dead load)
$M_{y}=10431 \mathrm{kNm}$ (30% of the bending moment in the transverse direction)
$\mathrm{M}_{\mathrm{z}}=22377 \mathrm{kNm}$

Internal forces in piers

Pier S21
Internal forces at the basement
Transverse direction
$\mathrm{N}=17485 \mathrm{kN}$ (axial force due to the dead load)
$\mathrm{M}_{\mathrm{y}}=18494 \mathrm{kNm}$
$M_{z}=3059 \mathrm{kNm}$ (30% of the bending moment in the longitudinal direction)

Longitudinal direction
$\mathrm{N}=17485 \mathrm{kN}$ (axial force due to the dead load)
$\mathrm{M}_{\mathrm{y}}=5548 \mathrm{kNm}$ (30\% of the bending moment in the transverse direction)
$\mathrm{M}_{\mathrm{z}}=10197 \mathrm{kNm}$

Flexural reinforcement in pier S14

$\mathrm{M}_{\mathrm{Rd}, \mathrm{y}}=41500 \mathrm{kNm}$

Effective moments of inertia

Pier S14

Transverse direction

$$
\begin{aligned}
& \xi_{y y}=\frac{f_{s y}}{E_{s}}=\frac{500 \cdot 1000 / 1,15}{2,0 \cdot 10^{8}}=0,00217 \\
& \Phi_{y}=2,1 \xi_{y} / d_{s}=2,1 \frac{0,00217}{0,9 \cdot 3,5}=0,00145
\end{aligned}
$$

$$
E_{c} I_{e f f}=\frac{1,2 M_{R d}}{\Phi_{y}}=\frac{1,2 \cdot 41500}{0,00145}=34344827 \mathrm{kNm}^{2}
$$

$$
I_{e f f, y}=1,11 \mathrm{~m}^{4}
$$

$$
\frac{I_{e f f, y}}{I_{y}}=\frac{1,11}{5,18}=0,21
$$

Shear areas are also appropriatelly reduced

Longitudinal direction

$$
\begin{aligned}
& \xi_{y}=\frac{f_{s y}}{E_{s}}=\frac{500 \cdot 1000 / 1,15}{2,0 \cdot 10^{8}}=0,00217 \\
& \Phi_{y}=2,1 \xi_{y y} / d_{s}=2,1 \frac{0,00217}{0,9 \cdot 2}=0,00253 \\
& E_{c} I_{e f f}=\frac{1,2 M_{R d}}{\Phi_{y}}=\frac{1,2 \cdot 25000}{0,00253}=11857710 \mathrm{kNm}^{2} \\
& I_{e f f, z}=0,38 \mathrm{~m}^{4} \\
& \frac{I_{e f f, z}}{I_{z}}=\frac{0,38}{1,94}=0,20
\end{aligned}
$$

Flexural reinforcement in pier S21

Effective moments of inertia

Pier S21

Transverse direction
$\xi_{y}=\frac{f_{s y}}{E_{s}}=\frac{500 \cdot 1000 / 1,15}{2,0 \cdot 10^{8}}=0,00217$
$\Phi_{y}=2,1 \xi_{\xi_{y}} / d_{s}=2,1 \frac{0,00217}{0,9 \cdot 3,5}=0,00145$
$E_{c} I_{\text {eff }}=\frac{1,2 M_{R d}}{\Phi_{y}}=\frac{1,2 \cdot 34800}{0,00145}=28800000 \mathrm{kNm}^{2}$
$I_{e f f, y}=0,93 m^{4}$
$\frac{I_{e f f, v}}{I_{y}}=\frac{0,93}{5,18}=0,18$

Longitudinal direction

$$
\begin{aligned}
& \xi_{y}=\frac{f_{s y}}{E_{s}}=\frac{500 \cdot 1000 / 1,15}{2,0 \cdot 10^{8}}=0,00217 \\
& \Phi_{y}=2,1 \xi_{y} / d_{s}=2,1 \frac{0,00217}{0,9 \cdot 2}=0,00253 \\
& E_{c} I_{e f f}=\frac{1,2 M_{R d}}{\Phi_{y}}=\frac{1,2 \cdot 20800}{0,00253}=9865610 \mathrm{kNm}^{2} \\
& I_{\text {eff }, z}=0,32 \mathrm{~m}^{4} \\
& \frac{I_{e f f, z}}{I_{z}}=\frac{0,32}{1,94}=0,16
\end{aligned}
$$

Shear areas are also appropriatelly reduced

The effective stiffness of pier S14 is smaller than that assumed at the begining of the analysis. Estimated forces are still conservative. Displacements should be estimated based on the reduced effective stiffness.

The effective stiffness of Pier S21 is also smaller than the assumed value. However it is not clear that the estimated effective stiffness will be actually activated since the provided strength is larger from the required value (minimum reinforcement is provided). Therefore, the reduction of the effective stiffness larger than 50% can not be taken into account for the estimation of forces. For the estimation of displacements the larger reduction of the effective stiffness can be taken into account since the results are conservative.

Displacements (estimated reduction of the effective stiffness was considered)
Periods of vibrations
$\mathrm{T} 1=2,642 \mathrm{~s}$
$\mathrm{T} 2=1,646 \mathrm{~s}$
T3 $=1,557 \mathrm{~s}$
Displacements above the abutments d_{Ee} due to the reduced seismic action
Longitudinal direction
$\mathrm{d}_{\mathrm{Ee}}=6,12 \mathrm{~cm}$ (elastic spectrum was considered)
Transverse direction
$d_{\mathrm{Ee}}=4,82 \mathrm{~cm}$
Diasplacaments due to the seismic action
Longitudinal direction
$d_{E}=d_{E e} \cdot q=6,4 \cdot 3,5=21,4 \mathrm{~cm}$
Transverse direction
$d_{E}=d_{E e} \cdot q=4,82 \cdot 3,5=16,9 \mathrm{~cm}$

Comparison of the two approaches

Periods of vibrations

Unreduced effective stiffness (forces)
$\mathrm{T} 1=1,170 \mathrm{~s}$
$\mathrm{T} 2=0,747 \mathrm{~s}$

Reduced effective stiffness (50\%)
$\mathrm{T} 1=1,654 \mathrm{~s}$
$\mathrm{T} 2=1,038 \mathrm{~s}$

Flexural reinforcement
Unreduced effective stiffness (forces) Reduced effective stiffness (50\%) S14 μ = 1,86\%

S21 $\mu=0,50 \%$ (minimum)
S14 $\mu=1,01 \%$
$\mathrm{S} 21 \mu=0,50 \%$ (minimum)
Displacements (reduced eff. stiffness)
$\mathrm{d}_{\mathrm{e}, \text { long }}=21,4 \mathrm{~cm}$
$d_{e, \text { long }}=21,4 \mathrm{~cm}$
$d_{e, t r a n}=13,3 \mathrm{~cm}$
$d_{e, t r a n}=16,9 \mathrm{~cm}$

Displacements due to the other actions

Displacements due to the seismic action should be combined with displacements due to the other actions:
a) displacements d_{G} due to the permanent and quasi-permanent actions (e.g. pre-stressing, creep, shrinkage)
b) Due to the quasi-permanent temperature effects $\psi_{2} d_{T}$

Detailing

Flexural strength at the basement

Overstrength factor γ_{0}

Pier S14
$\eta=\frac{N_{E d}}{A_{c} f_{c k}}=\frac{14329}{3,76 \cdot 25 \cdot 10^{3}}=0,152<0,2$
$\gamma=1,35$
Pier S21
$\eta=\frac{N_{E d}}{A_{c} f_{c k}}=\frac{17485}{3,76 \cdot 25 \cdot 10^{3}}=0,186<0,2$
$\gamma_{b}=1,35$

Opomba:
Normalized axial force is less than 0,2; Special confinement reinforcement is not required 6.2.4(4)

Therefore, the overstrength factor amounts to 1,35

Flexural strength at the basement

Pier S14
Transverse direction
$\mathrm{M}_{\mathrm{Rd}}=56500 \mathrm{kNm}$
$M_{o}=\gamma_{0} M_{R d}=1,35 \cdot 56500=76275 \mathrm{kNm}$
Longitudinal direction
$\mathrm{M}_{\mathrm{Rd}}=33500 \mathrm{kNm}$
$M_{o}=\gamma_{0} M_{R d}=1,35 \cdot 33500=45225 \mathrm{kNm}$
Pier S21
Transverse direction
$\mathrm{M}_{\mathrm{Rd}}=34800 \mathrm{kNm}$
$M_{o}=\gamma_{0} M_{R d}=1,35 \cdot 34800=46980 \mathrm{kNm}$
Longitudinal direction
$\mathrm{M}_{\mathrm{Rd}}=20800 \mathrm{kNm}$
$M_{o}=\gamma_{0} M_{R d}=1,35 \cdot 20800=28080 \mathrm{kNm}$

Plastic hinge length and the flexural reinforcement outside the plastic hinge region

Bending moments that were taken into account to define the flexural reinforcement outside the plastic hinge region

Capacity design bending moments outside the L_{p}

$M_{o}=1,35 \cdot M_{R d} \quad M_{R d}$
H_{s} - height of the column

Minimum plastic hinge length:
$0,2 \mathrm{H}_{\mathrm{s}}$ or depth of the cross-section in the relevant direction (larger value)

In the analyzed bridge the minimum length of the plastic hinge is $L_{p}=3,5 \mathrm{~m}$

In pier S14 L_{p} is:
$L_{p}=0,26 \cdot 1400=364 \mathrm{~cm}$
In pier S21 L_{p} is:
$L_{p}=0,26 \cdot 2100=546 \mathrm{~cm}$

Maximum bending moments outside the plastic hinge region:
Pier S14
Transverse direction
$\mathrm{M}_{\mathrm{y}}=56500 \mathrm{kNm} \quad\left(\mathrm{N}_{\mathrm{G}}=13987 \mathrm{kN}\right)$
Longitudinal direction
$\mathrm{M}_{\mathrm{z}}=33500 \mathrm{kNm} \quad\left(\mathrm{N}_{\mathrm{G}}=13987 \mathrm{kN}\right)$

Pier S21
Transverse direction
$\mathrm{M}_{\mathrm{y}}=34800 \mathrm{kNm} \quad\left(\mathrm{N}_{\mathrm{G}}=16972 \mathrm{kN}\right)$
Longitudinal direction

$$
M_{z}=20800 \mathrm{kNm} \quad\left(\mathrm{~N}_{\mathrm{G}}=16972 \mathrm{kN}\right)
$$

Pier S21

At the top $5,7 \mathrm{~m}$ of S 14 minimum reinforcement provides adequate flexural strength
$\mathrm{N}_{\mathrm{G}}=13548 \mathrm{kN}$
C 25/30
वj 500 MPa

Arm. od roba 5.0 cm
$\mu=0.49 \%$

$$
\begin{aligned}
& M_{y}=5,7 / 14 \times 76275=31050 \mathrm{kNm} \\
& M_{z}=5,7 / 14 \times 45225=18410 \mathrm{kNm}
\end{aligned}
$$

Shear reinforcement at the plastic hinge region

Calculated based on the maximum shear forces V_{c}
In cantilever columns it is defined as: $V_{C}=\frac{M_{o}}{H_{s}}$
Pier S14
Transverse
$V_{C}=\frac{M_{o}}{H_{s}}=\frac{76275}{14}=5448 \mathrm{kN}$
Longitudinal
$V_{C}=\frac{M_{o}}{H_{s}}=\frac{45225}{14}=3230 \mathrm{kN}$
Pier S21
Transverse
$V_{C}=\frac{M_{o}}{H_{s}}=\frac{46980}{21}=2237 \mathrm{kN}$
Longitúdinal
$V_{C}=\frac{M_{o}}{H_{s}}=\frac{28080}{21}=1337 \mathrm{kN}$

Different shear mechanisms of concrete without shear reinforcement

Shear failure modes

(c)

(d)

(a) Arch failure
(b) Compression diagonal failure
(c) Exceeded principal tension stresses
(d) Failure of the truss mechanism
(e)

(e) Sliding failure short piers

First the shear strength of the concrete without shear reinforcement is checked
Shear strength of concrete in pier S14

$$
\begin{aligned}
& \left.V_{R d c}=\left[C_{R d, c} k\left(100 \rho f_{c k}\right)^{1 / 3}+k_{1} \sigma_{c p}\right]\right]_{w} d \\
& \mathrm{C}_{\mathrm{Rd}, \mathrm{c}}=0,18 / 1,5=0,12 \\
& \mathrm{k}_{1}=0,15 \\
& \mathrm{~N}_{\mathrm{Ed}}=14329 \mathrm{kN} \\
& \mathrm{~A}_{\mathrm{c}}=3,76 \\
& \mathrm{f}_{\mathrm{ck}}=25 \mathrm{MPa} \\
& \sigma_{c p}=\frac{N_{E d}}{A_{c}}=\frac{14329}{3,76 \cdot 1000}=3,81 \mathrm{MPa}>0,2 f_{c d}=0,2 \frac{25}{1,5}=3,3 \mathrm{MPa} \\
& \sigma_{c p}=3,3 \mathrm{MPa}
\end{aligned}
$$

Transverse direction

$$
\gamma_{B d}=1,25+1-\frac{3,5 \cdot 3256}{5448}=0,16 \Rightarrow \gamma_{B d}=1,0
$$

$$
\begin{aligned}
& d=(350-4-1,2) 0,9 \cdot 10=3103 \mathrm{~mm} \\
& b_{w}=(40-4-1,2) 10 \cdot 2=696 \mathrm{~mm}
\end{aligned}
$$

$$
k=1+\sqrt{\frac{200}{d}}=1+\sqrt{\frac{200}{3103}}=1,25<2
$$

$$
\rho=\frac{148 \cdot 3,81}{310,3 \cdot 69,6}=0,026>0,02 \quad \rho=0,02
$$

$$
V_{R d, c}^{*}=\left[0,12 \cdot 1,25(100 \cdot 0,02 \cdot 25)^{1 / 3}+0,15 \cdot 3,33\right] 3103 \cdot 696 / 1000=2272 \mathrm{kN}<5448 \mathrm{kN}
$$

$$
V_{R d, \max }=0,5 b_{w} d v f_{c d}=0,50,6963,1030,5416,71000=9738 \mathrm{kN}>5448 \mathrm{kN}
$$

Longitudinal direction

$$
v=0,6\left(1-\frac{f_{c k}}{250}\right)=0,6\left(1-\frac{25}{250}\right)=0,54
$$

$$
\begin{aligned}
& d=(200-4-1,2) 0,9 \cdot 10=1753 \mathrm{~mm} \\
& b_{w}=(40-4-1,2) 10 \cdot 2=696 \mathrm{~mm} \\
& k=1+\sqrt{\frac{200}{d}}=1+\sqrt{\frac{200}{1753}}=1,34<2 \\
& Q=\frac{148 \cdot 3,81}{175,3 \cdot 69,6}=0,046>0,02 \quad Q=0,02 \\
& \left.V_{R d, c}^{*}=\left[0,12 \cdot 1,34(100 \cdot 0,02 \cdot 25)^{1 / 3}+0,15 \cdot 3,33\right]\right] 753 \cdot 696 / 1000=1332 \mathrm{kN}<3230 \mathrm{kN}
\end{aligned}
$$

Total shear force should be sustained by the shear reinforcement
Transverse direction

$$
V_{w d}=\frac{A_{s w}}{s} z f_{y w d}=\frac{1,13 \cdot 4}{10} 0,9 \cdot 310,3 \cdot \frac{50}{1,15}=5488 \mathrm{kN}=5488 \mathrm{kN}
$$

Longitudinal direction

$$
V_{w d}=\frac{A_{s w}}{s} z f_{y w d}=\frac{1,13 \cdot 4}{10} 0,9 \cdot 175,3 \cdot \frac{50}{1,15}=3100 \mathrm{kN} \sim 3230 \mathrm{kN}(96 \%)
$$

4 legs stirrups $\phi 12 / 10 \mathrm{~cm}$

Shear strength of concrete in pier S21

Transverse direction

$$
\begin{aligned}
& d=(350-4-0,8) 0,9 \cdot 10=3107 \mathrm{~mm} \\
& b_{w}=(40-4-0,8) 10 \cdot 2=704 \mathrm{~mm} \\
& k=1+\sqrt{\frac{200}{d}}=1+\sqrt{\frac{200}{3107}}=1,25<2 \\
& \rho=\frac{94 \cdot 1,54}{310,7 \cdot 70,4}=0,0066<0,02 \\
& V_{R d, c}^{*}=\left[0,12 \cdot 1,25(100 \cdot 0,0066 \cdot 25)^{1 / 3}+0,15 \cdot 3,33\right] 3107 \cdot 704 / 1000=1931 \mathrm{kN}<2237 \mathrm{kN}
\end{aligned}
$$

Longitudinal direction

$$
\begin{aligned}
& d=(200-4-0,8) 0,9 \cdot 10=1757 \mathrm{~mm} \\
& b_{w}=(40-4-0,8) 10 \cdot 2=704 \mathrm{~mm} \\
& k=1+\sqrt{\frac{200}{d}}=1+\sqrt{\frac{200}{1757}}=1,34<2 \\
& \text { Q }=\frac{86 \cdot 1,54}{175,7 \cdot 70,4}=0,0107<0,02 \\
& V_{R d, c}^{*}=\left[0,12 \cdot 1,34(100 \cdot 0,0107 \cdot 25)^{1 / 3}+0,15 \cdot 3,33\right] 1757 \cdot 704 / 1000=1211 \mathrm{kN}<1337 \mathrm{kN}
\end{aligned}
$$

Total shear force is sustained by the shear reinforcement
Transverse direction

$$
V_{w d}=\frac{A_{s w}}{s} z f_{y w d}=\frac{0,5 \cdot 4}{10} 0,9 \cdot 310,7 \cdot \frac{50}{1,15}=2431 \mathrm{kN}>2237 \mathrm{kN}
$$

Longitudinal direction

$$
V_{w d}=\frac{A_{s w}}{s} z f_{y w d}=\frac{0,5 \cdot 4}{10} 0,9 \cdot 175,7 \cdot \frac{50}{1,15}=1375 \mathrm{kN}>1337 \mathrm{kN}
$$

4 leg stirrups $\phi 8 / 10 \mathrm{~cm}$

Buckling of the longitudinal reinforcement

Two possible failure modes
Large distance between stirrups
Small amount of the transverse reinforcement

Maximum distance between stirrups

Pier S14

$\mathrm{s}_{\mathrm{L}}=\delta \phi$
$\delta=2,5(f t k / f y k)+2,25=2,51,35+2,25=5,625$
$\mathrm{s}_{\mathrm{L}}=5,6252,2=12,4 \mathrm{~cm} \quad \mathrm{ftk}$ - tensile strength of the transverse reinforcement fyk - yield strength of the transverse reinforcement

Pier S21
$\mathrm{s}_{\mathrm{L}}=\delta \phi$
$\delta=2,5(f t k / f y k)+2,25=2,51,35+2,25=5,625$
$\mathrm{s}_{\mathrm{L}}=5,6251,4=7,9 \mathrm{~cm}$

Maximum distance between stirrups legs (the procedure was incorrect, later it was changed)

Pier S14

$\min \left(\frac{A_{t}}{s_{l}}\right)=\frac{\sum A_{s} \cdot f_{s t}}{1,6 f_{y t}}=\frac{3381}{1,6} 1=714 \mathrm{~mm}^{2} / \mathrm{m}$
$s_{l} \leq \frac{A_{t}}{714}=\frac{113}{714}=0,158 \mathrm{~m}=15,8 \mathrm{~cm}$

Pier S21
$\min \left(\frac{A_{t}}{s_{l^{\prime}}}\right)=\frac{\sum A_{s} \cdot f_{s t}}{1,6 f_{y t}}=\frac{2 \cdot 154}{1,6} 1=192 \mathrm{~mm}^{2} / \mathrm{m}$
$s_{l} \leq \frac{A_{t}}{192}=\frac{50}{192}=0,260 \mathrm{~m}=26 \mathrm{~cm}$

Summary of the reinforcement

Pier S14

Summary of the reinforcement
Pier S21

Capacity design:
Superstructure
Bearings
Foundations
Abutments

